HAGAB - EPD

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

Roof Feedthrough – Coated and Isolated HAGAB INDUSTRI AB

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

GENERAL INFORMATION

Manufacturer	
Manufacturer	Hagab Industri AB
Address	Industrivägen 5 Taberg, Sweden
Contact details	info@hagab.com
Website	hagab.com/

EPD standards, scope and	verification
Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Petter Ydrestrand, HAGAB
EPD verification	Independent verification of this EPD and data, according to ISO 14025:
	□ Internal certification □ External verification
EPD verifier	Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

Product	
Product name	Roof Feedthrough – Coated and Isolated
Additional labels	TGHA-A, TGHA-B
Product reference	-
Place of production	Taberg, Sweden
Period for data	Calendar year 2023
Averaging in EPD	Multiple products
Variation in GWP-fossil for A1-A3	22,2%

Environmental data summary										
Declared unit	1 kg of coated and isolated roof feedthrough									
Declared unit mass	1 kg									
GWP-fossil, A1-A3 (kgCO ₂ e)	3,42E+00									
GWP-total, A1-A3 (kgCO ₂ e)	2,37E+00									
Secondary material, inputs (%)	46.8									
Secondary material, outputs (%)	28.1									
Total energy use, A1-A3 (kWh)	19.1									
Total water use, A1-A3 (m³e)	0,07									

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

HAGAB is one of Sweden's leading companies that develop, manufacture and sell advanced fire protection and ventilation solutions. Since 1985, HAGAB has made everyday life easier and safer for our customers.

PRODUCT DESCRIPTION

Hagab roof feedthroughs are produced locally at our manufacturing site in Taberg, south of Jönköping. We provide two different types of roof feedthroughs including single and combined. Our products meet the demands of both performance and esthetical properties.

We offer roof feedthroughs in a wide range of sizes and materials including, hot-dip galvanised, Zink-Magnesium, Aluminium-Zink and stainless steel. We also allow our customers to order a specialized size or material. With our powder coating facility, we offer the customer to receive the roof feedthrough in a wide range of different colours.

For all standard product sizes and weights see the table in Appendix A.

Further information can be found at www.hagab.com.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	81,6%	Europe
Minerals	18,4%	Europe
Fossil materials	-	
Bio-based materials	-	

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0.291

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 kg of coated and isolated roof feedthrough
Mass per declared unit	1 kg
Functional unit	-
Reference service life	-

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Produc	ct stage		Asseml stage	bly	Use sta	ıge						End of	Beyond the system boundaries			
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6		C1	C2	C3	C4	
x	x	x	x	x	MND	MND	MND	MND MND MND MND		x	x	x	x	x		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse

Modules not declared = MND. Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production, packaging materials, and other ancillary materials. The raw materials consist of coated steel sheets and stone wool bought from suppliers in Sweden from different distances where a Euro 6 lorry is assumed. Also, fuels used by machines, and handling of waste formed in the preparatory production processes at the manufacturing facilities are included in this stage.

Our manufacturing process includes punching sheet metal, bending and assembling. All the electricity and heating used for these processes are accounted for based on sales volume. A scrap factor of 20% is taken for punching metal sheets and cutting stone wool. The manufacturing waste is 100% recycled due to close collaboration with waste process companies and 50 km with Euro 6 lorry is assumed for the transport. The finished product is packed on an appropriate wooden pallet for the specific size, plastered, and anchored with plastic strips.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurring from final product delivery to the construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions. The roof feedtroughs are mostly sold locally therefore a 150 km transportation by Euro 6 lorry is assumed.

The product is assumed to be installed by crane; therefore, fuel consumption is accounted for. A5 involves waste treatment of packaging where 33% of the plastering packaging is assumed to be recycled, 43% incinerated for energy recovery and 24% sent to landfill based on EuroPal (2023). The waste treatment of the pallet is modelled according to Eurostat & PSR-0014 v2 (2023) where 30% are recycled, 30% incarnated for energy recovery and 40% are sent to landfill. A transport distance of 50 km is assumed.

PRODUCT USE AND MAINTENANCE (B1-B7)

The environmental impact of the use phase for this product can be neglected therefore this phase has not been included in the analysis. Further, air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

The modelled scenario for EOL is based on recycling, incarnation and landfill. C1 covers the energy used for deconstructing the product where construction equipment is assumed to be involved, therefore fuel consumption is accounted for. C2 involves the transportation of waste which is assumed to be 50 km with a Euro 6 lorry. C3 covers both the sorting and pressing of iron scrap and the handling of waste stone wool. C4 includes the waste disposal processes where 95% of the steel is assumed to be recycled and 5% put in landfill, based on national and EU statistics. For the stone wool, 75% is assumed to be recycled and 25% put in landfill, based on data forecasts from Rockwool. D includes the loads from recycling the steel and stone wool further the benefit of avoiding virgin production of steel and stone wool.

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

LIFE CYCLE DIAGRAM

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw materials and energy consumption. All inputs and outputs of the unit processes, for which data is available, are included in the calculation.

There is no neglected unit process more than 1% of total mass or energy flows. The module-specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	Allocated by mass or volume
Packaging materials	Allocated by mass or volume
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

AVERAGES AND VARIABILITY

Type of average	Multiple products
Averaging method	Averaged by shares of total volume
Variation in GWP-fossil for A1-A3	22,2%

The product exists in two different variants which come in many different sizes therefore the declared unit is per 1 kg product. The GWP-fossil varies for specific sizes due to different amounts of steel and stone wool. The main data used to calculate the average steel and stone wool ratio is based on the sales volume for the past year. The table in Appendix A displays the weight of every standard product which is used to translate the result of this EPD to a specific product size.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Ecoinvent v3.8 and One Click LCA databases were used as sources of environmental data.

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	В5	B6	B7	C1	C2	СЗ	C4	D
GWP – total ¹⁾	kg CO ₂ e	2,98E+00	5,92E-02	-6,71E-01	2,37E+00	2,54E-02	1,37E+00	MND	2,07E-01	7,51E-03	1,19E-02	-4,10E-05	-1,74E+00						
GWP – fossil	kg CO ₂ e	2,97E+00	5,92E-02	3,91E-01	3,42E+00	2,54E-02	3,03E-01	MND	2,07E-01	7,51E-03	1,95E-02	4,57E-04	-1,74E+00						
GWP – biogenic	kg CO ₂ e	9,74E-03	0,00E+00	-1,07E+00	-1,06E+00	0,00E+00	1,07E+00	MND	0,00E+00	0,00E+00	-7,62E-03	-4,98E-04	0,00E+00						
GWP - LULUC	kg CO ₂ e	3,71E-03	2,37E-05	5,71E-03	9,45E-03	9,36E-06	3,29E-05	MND	2,06E-05	2,97E-06	2,34E-05	4,32E-07	-3,75E-04						
Ozone depletion pot.	kg CFC ₋₁₁ e	2,08E-07	1,37E-08	3,24E-08	2,55E-07	5,84E-09	4,65E-08	MND	4,42E-08	1,74E-09	2,75E-09	1,85E-10	-7,05E-08						
Acidification potential	mol H⁺e	7,10E-02	1,68E-04	2,01E-03	7,32E-02	1,07E-04	2,25E-03	MND	2,15E-03	2,25E-05	2,40E-04	4,30E-06	-8,26E-03						
EP-freshwater ²⁾	kg Pe	6,16E-05	4,23E-07	1,97E-05	8,17E-05	2,08E-07	1,06E-06	MND	6,85E-07	5,45E-08	9,40E-07	4,79E-09	-7,06E-05						
EP-marine	kg Ne	4,92E-03	3,36E-05	4,47E-04	5,40E-03	3,19E-05	9,98E-04	MND	9,51E-04	4,85E-06	5,53E-05	1,49E-06	-1,48E-03						
EP-terrestrial	mol Ne	2,70E-01	3,73E-04	5,01E-03	2,76E-01	3,52E-04	1,08E-02	MND	1,04E-02	5,38E-05	6,34E-04	1,64E-05	-1,83E-02						
POCP ("smog") ³⁾	kg NMVOCe	1,41E-02	1,43E-04	1,79E-03	1,61E-02	1,13E-04	2,98E-03	MND	2,87E-03	1,99E-05	1,75E-04	4,76E-06	-8,60E-03						
ADP-minerals & metals ⁴⁾	kg Sbe	1,02E-05	2,14E-07	3,62E-06	1,41E-05	5,95E-08	1,61E-07	MND	1,05E-07	2,61E-08	2,29E-06	1,05E-09	-3,12E-05						
ADP-fossil resources	MJ	7,01E+00	8,81E-01	1,66E+01	2,45E+01	3,81E-01	3,00E+00	MND	2,78E+00	1,12E-01	2,75E-01	1,25E-02	-1,57E+01						
Water use ⁵⁾	m³e depr.	1,39E+00	4,13E-03	5,43E-01	1,94E+00	1,71E-03	2,68E-02	MND	7,48E-03	5,21E-04	4,68E-03	3,98E-05	-3,36E-01						

1) GWP = Global Warming Potential.

2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e.

3) POCP = Photochemical ozone formation.

4) ADP = Abiotic depletion potential.

5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and lonizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	В5	B6	B7	C1	C2	СЗ	C4	D
Particulate matter	Incidence	6,13E-07	4,77E-09	3,27E-08	6,50E-07	2,92E-09	5,92E-08	MND	5,76E-08	6,35E-10	4,43E-09	4,29E-10	-1,11E-07						
lonizing radiation6)	kBq U235e	1,26E-01	4,63E-03	6,95E-01	8,26E-01	1,81E-03	1,46E-02	MND	1,28E-02	5,81E-04	2,83E-03	5,67E-05	4,61E-02						
Ecotoxicity (freshwater)	CTUe	1,21E+02	7,36E-01	8,46E+00	1,30E+02	3,43E-01	1,92E+00	MND	1,67E+00	9,42E-02	1,07E+00	8,18E-03	-5,94E+01						
Human toxicity, cancer	CTUh	1,65E-08	2,26E-11	1,40E-09	1,79E-08	8,42E-12	8,59E-11	MND	6,41E-11	2,82E-12	3,32E-11	2,04E-13	1,19E-08						
Human tox. non-cancer	CTUh	1,68E-07	7,20E-10	6,88E-09	1,76E-07	3,39E-10	1,97E-09	MND	1,21E-09	9,23E-11	1,45E-09	5,35E-12	-3,90E-08						
SQP ⁷)	-	7,93E+00	6,26E-01	8,78E+01	9,64E+01	4,39E-01	6,49E-01	MND	3,62E-01	8,52E-02	5,11E-01	2,68E-02	-5,88E+00						

6) EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

7) SQP = Land use related impacts/soil quality.

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4	D
Renew. PER as energy ⁸⁾	MJ	6,29E+00	1,28E-02	1,03E+01	1,66E+01	4,29E-03	2,67E-02	MND	1,59E-02	1,58E-03	4,17E-02	1,09E-04	-1,24E+00						
Renew. PER as material	MJ	0,00E+00	0,00E+00	9,35E+00	9,35E+00	0,00E+00	-9,35E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of renew. PER	MJ	6,29E+00	1,28E-02	1,97E+01	2,60E+01	4,29E-03	-9,32E+00	MND	1,59E-02	1,58E-03	4,17E-02	1,09E-04	-1,24E+00						
Non-re. PER as energy	MJ	3,63E+01	8,81E-01	1,46E+01	5,18E+01	3,81E-01	3,00E+00	MND	2,78E+00	1,12E-01	2,75E-01	1,25E-02	-1,57E+01						
Non-re. PER as material	MJ	1,52E-01	0,00E+00	2,85E+00	3,00E+00	0,00E+00	-2,87E+00	MND	0,00E+00	0,00E+00	-9,52E-02	-3,17E-02	0,00E+00						
Total use of non-re. PER	MJ	3,65E+01	8,81E-01	1,74E+01	5,48E+01	3,81E-01	1,26E-01	MND	2,78E+00	1,12E-01	1,80E-01	-1,92E-02	-1,57E+01						
Secondary materials	kg	4,68E-01	3,00E-04	3,56E-02	5,04E-01	1,06E-04	1,29E-03	MND	1,09E-03	3,73E-05	2,76E-04	2,63E-06	8,71E-01						
Renew. secondary fuels	MJ	2,86E-05	3,30E-06	3,15E-01	3,15E-01	1,07E-06	5,53E-06	MND	3,56E-06	4,07E-07	1,35E-05	6,88E-08	-1,69E-04						
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m ³	5,78E-02	1,12E-04	1,48E-02	7,28E-02	4,94E-05	2,61E-04	MND	1,69E-04	1,43E-05	1,61E-04	1,37E-05	-4,69E-03						

8) PER = Primary energy resources.

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4	D
Hazardous waste	kg	6,03E-01	1,00E-03	2,59E-02	6,30E-01	5,05E-04	4,15E-03	MND	3,72E-03	1,29E-04	1,61E-03	1,38E-05	-5,10E-01						
Non-hazardous waste	kg	8,73E+00	1,78E-02	6,87E-01	9,44E+00	8,30E-03	6,00E-01	MND	2,62E-02	2,28E-03	5,04E-02	4,02E-02	-2,64E+00						
Radioactive waste	kg	1,60E-04	6,07E-06	1,59E-04	3,25E-04	2,55E-06	2,03E-05	MND	1,96E-05	7,65E-07	1,56E-06	8,68E-08	2,33E-06						

END OF LIFE - OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	СЗ	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	0,00E+00	0,00E+00	2,00E-01	2,00E-01	0,00E+00	2,43E-01	MND	0,00E+00	0,00E+00	9,13E-01	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,49E-01	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,10E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	В5	B6	B7	C1	C2	СЗ	C4	D
Global Warming Pot.	kg CO ₂ e	2,94E+00	6,58E-02	3,89E-01	3,40E+00	2,51E-02	3,19E-01	MND	2,05E-01	7,44E-03	1,92E-02	4,48E-04	-1,65E+00						
Ozone depletion Pot.	kg CFC ₋₁₁ e	1,71E-07	1,22E-08	2,73E-08	2,11E-07	4,62E-09	3,69E-08	MND	3,50E-08	1,38E-09	2,21E-09	1,46E-10	-7,73E-08						
Acidification	kg SO ₂ e	3,96E-02	1,55E-04	1,60E-03	4,13E-02	8,35E-05	1,61E-03	MND	1,53E-03	1,83E-05	1,92E-04	3,25E-06	-6,68E-03						
Eutrophication	kg PO ₄ e	1,01E-02	3,34E-05	8,30E-04	1,10E-02	1,90E-05	1,35E-03	MND	3,55E-04	3,99E-06	6,19E-05	7,00E-07	-3,01E-03						
POCP ("smog")	kg C₂H₄e	1,28E-03	7,82E-06	1,61E-04	1,44E-03	3,26E-06	4,09E-05	MND	3,35E-05	8,93E-07	7,11E-06	1,36E-07	-9,60E-04						
ADP-elements	kg Sbe	8,23E-03	2,35E-07	3,60E-06	8,24E-03	5,76E-08	1,57E-07	MND	1,03E-07	2,54E-08	2,29E-06	1,04E-09	-3,11E-05						
ADP-fossil	MJ	3,47E+01	9,88E-01	1,74E+01	5,32E+01	3,81E-01	3,00E+00	MND	2,78E+00	1,12E-01	2,75E-01	1,25E-02	-1,57E+01						

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

HAGAB®

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, do- cuments and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online

This EPD has been generated by One Click LCA EPD genera- tor, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environ- mental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCAbased calculations have been carried out,

the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the deve- lopment of the declaration and have no conflicts of interest regarding this verification.

Magaly González Vázquez, as an authorized verifier acting for EPD Hub Limited

05.07.2024

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

APPENDIX A: PRODUCT VARIATIONS

As mentioned in earlier sections, the table in this appendix can be used to convert the results of the LCA presented in this EPD to all the below roof feedthroughs that are available at HAGAB. The environmental impact for each unique article can thus be calculated by multiplying the results presented in this EPD by the weight of the specific article.

TGHA-A	-	-		TGHB-B		-	
Article nr	Width [mm]	Height [mm]	Weight [kg]	Article nr	Width [mm]	Height [mm]	Weight [kg]
TGA033-08	200	800	9	TGB10203-	08 1000	800	62
TGA033-12	200	1200	13	TGB10203-	1000	1200	92
TGA036-08	100	800	10	TGB10206-	08 1000	800	76
TGA036-12	100	1200	15	TGB10206-	12 1000	1200	110
TGA043-08	300	800	12	TGB11223-	08 1100	800	70
TGA043-12	300	1200	18	TGB11223-	12 1100	1200	102
TGA046-08	200	800	14	TGB11226-	08 1100	800	82
TGA046-12	200	1200	21	TGB11226-	1100	1200	122
TGA053-08	400	800	16	TGB12243-	08 1200	800	76
TGA053-12	400	1200	24	TGB12243-	12 1200	1200	110
TGA056-08	300	800	18	TGB12246-	08 1200	800	90
TGA056-12	300	1200	27	TGB12246-	12 1200	1200	134
TGA063-08	500	800	19	TGB13263-	08 1300	800	82
TGA063-12	500	1200	28	TGB13263-	14 1300	1400	140
TGA066-08	400	800	22	TGB13266-	08 1300	800	98
TGA066-12	400	1200	33	TGB13266-	14 1300	1400	168
TGA073-08	600	800	22	TGB14283-	08 1400	800	88
TGA073-12	600	1200	33	TGB14283-	14 1400	1400	150
TGA076-08	500	800	26	TGB14286-	08 1400	800	106
TGA076-12	500	1200	39	TGB14286-	14 1400	1400	182
TGA083-08	700	800	25	TGB15303-	08 1500	800	94
TGA083-12	700	1200	37	TGB15303-	14 1500	1400	162
TGA086-08	600	800	30	TGB15306-	08 1500	800	114
TGA086-12	600	1200	45	TGB15306-	14 1500	1400	196
TGA093-08	800	800	28	TGB16323-	08 1600	800	100
TGA093-12	800	1200	42	TGB16323-	14 1600	1400	172
TGA096-08	700	800	34	TGB16326-	08 1600	800	122
TGA096-12	700	1200	51	TGB16326-	14 1600	1400	208
TGA103-08	900	800	31	TGB17343-	08 1700	800	108
TGA103-12	900	1200	46	TGB17343-	14 1700	1400	182

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

TGA106-08	800	800	38	
TGA106-12	800	1200	55	
TGA113-08	1000	800	35	
TGA113-12	1000	1200	51	
TGA116-08	900	800	41	
TGA116-12	900	1200	61	
TGA123-08	1100	800	38	
TGA123-12	1100	1200	55	
TGA126-08	1000	800	45	
TGA126-12	1000	1200	67	
TGA133-08	1200	800	41	
TGA133-14	1200	1400	70	
TGA136-08	1100	800	49	
TGA136-14	1100	1400	84	
TGA143-08	1300	800	44	
TGA143-14	1300	1400	75	
TGA146-08	1200	800	53	
TGA146-14	1200	1400	91	
TGA153-08	1400	800	47	
TGA153-14	1400	1400	81	
TGA156-08	1300	800	57	
TGA156-14	1300	1400	98	
TGA163-08	1500	800	50	
TGA163-14	1500	1400	86	
TGA166-08	1400	800	61	
TGA166-14	1400	1400	104	
TGA173-08	1600	800	54	
TGA173-14	1600	1400	91	
TGA176-08	1500	800	65	
TGA176-14	1500	1400	111	

TGB17346-08	1700	800	130
TGB17346-14	1700	1400	222
TGB363-08	300	800	18
TGB363-12	300	1200	27
TGB366-08	300	800	20
TGB366-12	300	1200	30
TGB483-08	400	800	24
TGB483-12	400	1200	36
TGB486-08	400	800	28
TGB486-12	400	1200	42
TGB5103-08	500	800	32
TGB5103-12	500	1200	48
TGB5106-08	500	800	36
TGB5106-12	500	1200	54
TGB6123-08	600	800	38
TGB6123-12	600	1200	57
TGB6126-08	600	800	44
TGB6126-12	600	1200	66
TGB7143-08	700	800	44
TGB7143-12	700	1200	66
TGB7146-08	700	800	52
TGB7146-12	700	1200	78
TGB8163-08	800	800	50
TGB8163-12	800	1200	75
TGB8166-08	800	800	60
TGB8166-12	800	1200	90
TGB9183-08	900	800	56
TGB9183-12	900	1200	84
TGB9186-08	900	800	68
TGB9186-12	900	1200	102